

Journal of Alloys and Compounds 253-254 (1997) 1-9

Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials¹

Borislav Bogdanović*, Manfred Schwickardi

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

Abstract

New reversible hydrogen storage systems are proposed, based on catalyzed reactions (Eqs. 4–6). The catalytic acceleration of the reactions in both directions is achieved by doping alkali metal aluminium hydrides with a few mol% of selected Ti compounds. The PCI diagrams of the Ti catalyzed systems show an absence of hysteresis and nearly horizontal pressure plateaus. The PCI of the NaAlH₄ system reveals two temperature-dependent pressure plateaus, corresponding to the two-step reversible dissociation of NaAlH₄. The PCI of the Na₃AlH₆ system shows only one pressure plateau; the latter can be lowered by partial substitution of Na by Li. In cyclic tests, reversible H₂ capacities of 4.2-3.1 and 2.7-2.1 wt% H have been achieved.

Keywords: Reversible hydrogen storage materials; Alkali metal aluminium hydrides; Titanium catalysts; Pressure composition isotherms

1. Introduction

One of the major drawbacks of the known reversible metal hydrides applicable for hydrogen storage in comparison to liquid hydrogen is their low gravimetric hydrogen content (expressed in wt% of H in a metal hydride). Magnesium hydride (MgH₂, 7.6 wt% H) and hydrides of magnesium alloy (e.g. Mg₂NiH₄, 3.8 wt% H) represent in this respect the optimum. However, for their use as storage materials a sufficient amount of heat above ~300°C is necessary for the desorption of hydrogen from the hydride. The disadvantages of the presently known, so-called lowand medium-temperature reversible hydrides [1] are the high costs for intermetallics and alloys applied for the purpose, combined with their 4-5 times lower storage capacities with respect to MgH₂ (LaNi₅H₆ 1.5, TiFeH₂ 1.8 wt% H). As repeatedly emphasized [2,3], the development of low- and/or medium-temperature reversible hydrides having higher then hitherto known storage capacities and lower prices per unit of stored hydrogen, is, therefore, desired. Taking into account their high hydrogen content, complex hydrides of the light metals such as Li, Na and Al have been considered for this purpose [4], although, according to our knowledge, no serious effort has been undertaken in this direction until now.

*Corresponding author.

It has been recognized ever since the early sixties through the work of Ashby [5] and Clasen [6] that sodium aluminium hydride (and other alkali metal aluminium hydrides) can be synthesized directly from sodium hydride (or sodium), aluminium and hydrogen under pressure and in various solvents. The direct synthesis of sodium aluminium hydride from the elements in absence of solvents, in the melt (Eq. (1)), was described by Dymova et al. [7].

$$Na + Al + 2H_2 \xrightarrow[p>175bar]{T < 270 - 280^{\circ}C} NaAlH_4$$
(1)

Sodium aluminium hexahydride, Na_3AlH_6 , can also be synthesized by a direct process (Eq. (2)) [8], or by heating $NaAlH_4$ with NaH in heptane (Eq. (3)) [9].

$$3Na + Al + 3H_2 \xrightarrow[350 bar]{\text{toluene/165°C/AlEt}_3} Na_3AlH_6$$
 (2)

$$NaAlH_{4} + 2NaH \xrightarrow[140]{heptane/160^{\circ}C} Na_{3}AlH_{6}$$
(3)

It has further been shown that the thermal dissociation of the solid NaAlH₄ in NaH, Al and H₂ (Eq. (4)) proceeds in two steps: In the first step NaAlH₄ dissociates under evolution of hydrogen to Na₃AlH₆ and aluminium metal (Eq. (4)a); at higher temperatures Na₃AlH₆ decomposes to give NaH, Al and additional hydrogen (Eq. (4)b) [8,10,11]. (The dissociation of NaH in Na and hydrogen occurs at still higher temperatures.) The thermal dissociation of

¹ Invited paper presented at the International Symposium on Metal-Hydrogen Systems, Les Diablerets, August 25–30, 1996, Switzerland.

separated Na_3AlH_6 takes place in a single-step process (Eq. (5)).

Although the hydrogen dissociation pressures corresponding to thermal dissociation of NaAlH₄ (Eq. (4)a, Eq. (4)b) and Na₃AlH₆ (Eq. (5)) were experimentally determined by Dymova et al. (see Fig. 2 and [11]), the reverse reactions, i.e. the formation of NaAlH₄ or Na₃AlH₆ from solid NaH, Al and gaseous hydrogen, have apparently not been experimentally accomplished. As a matter of fact, NaH–Al conglomerates, which upon thermolysis of NaAlH₄ or Na₃AlH₆ are being obtained in a highly active form, can, under suitable conditions (see below), be hydrogenated with a (partial) restoration of the starting materials [12]. The reactions Eq. (4)a, Eq. (4)b, Eq. (5) can thus be formulated as reversible reactions:

$$NaAlH_{4} \stackrel{(a)}{\rightleftharpoons} 1/3Na_{3}AlH_{6} + 2/3Al + H_{2} \uparrow \stackrel{(b)}{\rightleftharpoons} NaH + Al + 3/$$

$$2H_2$$
 (4)

 $Na_{3}AlH_{6} \rightleftharpoons 3NaH + Al + 3/2H_{2}^{\uparrow}$ (5)

In order that the systems discussed here could be utilized for reversible hydrogen storage, the reactions Eq. (4)a, Eq. (4)b, Eq. (5), in both directions, must proceed rapidly under acceptable reaction conditions during many dehydrogenation–rehydrogenation cycles. As it turned out, the reactions given in Eq. (4)a, Eq. (4)b, Eq. (5), as well as the corresponding reaction of Na₂LiAlH₆ [13] (Eq. (6)), can effectively be catalyzed by doping the alanates with small

$$Na_{2}LiAlH_{6} \rightleftharpoons 2NaH + LiH + Al + 3/2H_{2} \uparrow$$
(6)

amounts of transition metal or rare earth metal compounds, especially with titanium compounds [12]. On the basis of the results achieved, the doped alkali metal alanates can be taken into account as possible candidates for the reversible hydrogen storage. In the present paper we give a preliminary report concerning this work.

Table 1

Elemental analyses of undoped and Ti-doped alkali metal aluminium hydrogeneity	drides
--	--------

2. Experimental details

All reactions and operations with air-sensitive materials (metal hydrides, dopants, doped metal hydrides) were performed under argon using air- and water-free solvents. The elemental analyses were performed by Dornis and Kolbe (Mülheim an der Ruhr, Germany).

2.1. Starting materials

The hydrogen was 99.9%, Messer-Grießheim. The β -TiCl₃ was prepared from TiCl₄ and (H₃C)₃SiSi(CH₃)₃ or Et₃SiH [14]. The Ti(O-*n*-C₄H₉)₄ (Aldrich, 99%) was distilled in vacuum before use. The NaH was a commercial product (Fluka).

NaAlH₄ (Chemetall) was purified by dissolution in THF, separation from insoluble portions via filtration and precipitation from the solution by addition of ether (according to Clasen [6]) or pentane. Only the purified NaAlH₄ was used in all subsequent reactions. The white crystalline NaAlH₄ powder obtained after drying under vacuum displays in the IR spectrum (KBr pellet) very broad hydride bands with maxima around 720 and 1670 cm⁻¹; absorptions of coordinated THF or ether are not visible in the spectrum (El. analysis, see Table 1).

Ethanolysis/hydrolysis of a sample (0.4 g) of NaAlH₄ delivered 99.3% of the calculated amount of H₂ (MS analysis). A thermovolumetric analysis [15] of a NaAlH₄ sample (\sim 1 g, 4 °C min⁻¹, RT \rightarrow 270°C) is reproduced in Fig. 4.

 Na_3AlH_6 was prepared from $NaAlH_4$ and NaH under H_2 pressure in heptane (Eq. (3)) according to [9]. 16.57 g (0.31 mol) of $NaAlH_4$ and 14.87 g (0.62 mol) of NaH were suspended in 120 ml of heptane and the suspension, under intensive stirring, was heated to 162 °C for 72 h under 140 bar of H_2 . Na_3AlH_6 was then separated from the solvent by filtration, washed with pentane and dried in vacuum. Na_3AlH_6 (30.90 g) was obtained as a fine,

	Elemental composition (%)								
		Na	Al	Li	Н	С	Ti	Cl	
NaAlH ₄ (54.00)	Calc.	42.75	49.96	_	7.47	0.0	_	_	
	Found	42.71	49.46	_	7.62	0.28	-	_	
Ti-doped NaAlH ₄ (56.99)	Calc.	40.34	47.34	_	6.90	0.0	1.68	3.73	
$(NaAlH_{3,9}Ti_{0,02}Cl_{0,06})$	Found	41.80	46.81	_	6.95	0.28	1.46	2.79	
Na_3AlH_6 (102.0)	Calc.	67.62	26.45	_	5.93	0.0	-	_	
5 0	Found	67.27	26.15	_	5.84	0.88	_	_	
Ti-doped Na ₃ AlH ₆ (104.98)	Calc.	65.70	25.70	_	5.66	0.0	0.91	2.03	
$(Na_3AlH_5 Ti_{0.02}Cl_{0.06})$	Found	65.92	24.75	_	5.28	0.74	1.28	1.86	
$Na_{2}LiAlH_{6}$ (85.95)	Calc.	53.50	31.39	8.08	7.04	0.0	-	_	
2 0	Found	53.98	29.87	7.88	6.50	1.56	_	_	
Ti-doped Na ₂ LiAlH ₆ (88.93)	Calc.	51.70	30.34	7.81	6.69	0.0	1.08	2.39	
$(Na_2LiAlH_{5.9}Ti_{0.02}Cl_{0.06})$	Found	51.06	30.17	7.59	5.96	1.71	1.05	2.46	

slightly grey powder (Table 1) and identified through XRD and IR analyses. In the IR analyses the KBr pellet showed broad absorptions in the regions 500-1000 and around 1350 cm^{-1} ; absorptions arising from NaAlH_4 (~1670 cm⁻¹) are lacking in the spectrum.

A thermovolumetric analysis [15] of a sample of Na₃AlH₆ (~1 g; 4 °C min⁻¹, RT \rightarrow 270°C) gave 96% of the H₂ amount calculated according to Eq. (5).

Na₂LiAlH₆ was prepared from NaAlH₄, LiH and NaH, following the same procedure as given for Na_3AlH_6 [9]; it can also be prepared from $LiAlH_4$ and NaH (1:2) in toluene under H₂ pressure [13]. 6.79 g (126 mmol) of NaAlH₄, 3.04 g (127 mmol) of NaH and 0.97 g (122 mmol) of LiH were reacted in 90 ml of heptane in an autoclave under H₂ pressure, and under the same conditions as applied for the preparation of Na₃AlH₆. Na_2LiAlH_6 (11.08 g) was isolated as a fine, slightly grey powder (Table 1). The IR spectrum of Na₂LiAlH₆ was in accordance with that of Na₃AlH₆; bands arising from NaAlH₄ were not present in the spectrum. A thermovolumetric analysis [15] of a Na_2LiAlH_6 sample (~1 g; 4 °C min⁻¹, RT \rightarrow 500°C) gave 98% of the amount of H₂ calculated according to the equation: $Na_2LiAlH_6 \rightarrow 2Na +$ $LiH + Al + 2\frac{1}{2} H_2^{\uparrow}.$

2.2. Doping procedures

NaAlH₄/2 mol% β -TiCl₃/ether: 1.58 g (10.2 mmol) of β -TiCl₃ were added to a stirred suspension of 26.83 g (0.50 mol) NaAlH₄ in 150 ml of ether whereby the mixture turned a deep brown colour and evolution of hydrogen began. The evolution of hydrogen was monitored by means of an automatic gas burette [15], connected to the reaction flask. The suspension was stirred until the H_2 evolution had ended (~45 min; H₂ evolved: 350 ml; 1.43 mol of H_2/mol Ti). The ether was evaporated and the residual solid dried under vacuum until a constant weight (28.33 g) was reached (Table 1). The IR spectrum of the Ti-doped NaAlH₄ (KBr pellet) was in accordance with that of NaAlH₄. NaAlH₄/2 mol% Ti(OBu)₄/ether: The doping of NaAlH4 (10.96 g, 203 mmol) with 2 mol% of Ti(OBu)₄ (1.39 ml) in ether (25 ml) was carried out in the same way as the doping with β -TiCl₃. H₂ evolution: 205 ml; 2.1 mol of H_2 /mol Ti. Ti-doped NaAl H_4 : 12.40 g.

The doping procedure for Na_3AlH_6 (15.99 g, 157 mmol) with 2 mol% of β -TiCl₃ (0.48 g, 3.1 mmol) in ether (30 ml) was the same as that for NaAlH₄, described above. H₂ evolution: 110 ml; 1.48 mol of H₂/mol Ti. Ti-doped Na₃AlH₆: 16.46 g (Table 1).

The doping of Na₃AlH₆ (9.58 g, 94 mmol) with 2 mol% of Ti(OBu)₄ (0.64 ml, 1.9 mmol) in ether (30 ml) was carried out in the same manner as described for the doping of NaAlH₄ with β -TiCl₃. H₂ evolution: 93 ml; 2.1 mol of H₂/mol Ti. The obtained amount of Ti doped Na₃AlH₆: 10.13 g.

The doping of Na₂LiAlH₆ (5.87 g, 86 mmol) with 2 mol% of β -TiCl₃ (0.22 g, 1.4 mmol) in ether (25 ml) was carried out in the same manner as described for NaAlH₄. H₂ evolution: 50 ml; 1.49 mol of H₂/mol Ti. Ti-doped Na₂LiAlH₆: 6.03 g (Table 1).

2.3. Determination of pressure-composition isotherms (PCI-s) of Ti-doped alkali metal alanates

The equipment used for the determination of PCI-s, as well as for carrying out the cyclic tests in open systems described below, is schematically represented in Fig. 1. It consisted of a stainless-steel autoclave of 45 ml volume, provided with two thermocouples (for measuring the temperatures inside the hydride sample and within the autoclave) and two valves. The first valve was either connected to a hydrogen pressure cylinder (0.1 l volume) or to a pressure-tension transformer (U/P) for recording the pressure changes within the autoclave. The second valve was joined to a 2 l, automatically registering gas burette [15] which served to measure the hydrogen blowoff from the autoclave each time. The temperatures of the sample and of the autoclave as well as the pressure within the autoclave, or alternatively the level of the burette, were registered by means of a 3-channel recorder. The autoclave was fitted into a heating furnace equipped with a temperature regulator.

A sample (~10 g) of the Ti-doped alkali metal alanate was added to a stainless-steel beaker situated in the autoclave. The valves connecting the autoclave to the burette and to the pressure cylinder were closed and the autoclave then heated and kept at the desired temperature (180 or 211°C) during the entire measurement. When, under isothermal conditions, a constant hydrogen pressure inside the autoclave was attained, a portion of hydrogen $(\sim 0.5 \text{ l})$ was blown off the autoclave and measured via the burette. The same procedure was repeated until no more hydrogen evolved from the sample. The autoclave was then successively pressurized with 20-30 bar of hydrogen originating from the pressure cylinder and left standing each time until a constant pressure in the autoclave and a constant temperature of the sample was attained (1/2-6d). The procedure was repeated until no more hydrogen was absorbed by the sample. The respective amount of chemically bound hydrogen in the sample (H/Me) was calculated from the dead volume of the system (32 ml) and the experimentally determined amount of hydrogen present in the system at given pressures and temperatures.

2.4. Dehydrogenation-rehydrogenation (cyclic) tests

2.4.1. Ti-doped and undoped $NaAlH_4$

Samples (1-2 g) of Ti-doped and undoped NaAlH₄ were dehydrogenated under constantly increasing (Fig. 4)

or constantly held temperatures (Fig. 5), using the earlier described [15] thermovolumetric apparatus.

Samples (2-3 g) of the above-mentioned materials, dehydrogenated under constantly increasing temperature (Fig. 4), were subjected to rehydrogenation at $170 \text{ }^{\circ}\text{C}/152$ bar (initial H₂ pressure). The progression of rehydrogenation in the course of time is shown in Fig. 6.

Cyclic tests with samples of Ti-doped and undoped NaAlH4 (each 2.4 g) were carried out using the equipment represented in Fig. 1. The tests were performed in an open system, i.e. during dehydrogenations, hydrogen was blown off against normal pressure and measured by means of the gas burette and, during hydrogenations, fresh hydrogen was taken from the hydrogen pressure cylinder. Dehydrogenations were implemented by heating the sample to 270 °C at 4 °C min⁻¹, after which the temperature was kept constant until the end of H₂ evolution (Fig. 4). Hydrogenations were performed at 170 °C/150 bar (initial H₂ pressure; see Fig. 6) over 5 or 21 h. The reversible H₂ storage capacities of Fig. 7 are calculated on the basis of the amount of hydrogen liberated during dehydrogenations.

2.5. Ti-doped and undoped Na_3AlH_6

Cyclic tests of β -TiCl₃ doped and undoped Na₃AlH₆ in an open system (Fig. 8) were carried out in a way analogous to that for NaAlH₄, except that hydrogenations were performed at 200 °C/60 bar (initial H_2 pressure; a pressure drop of 20 bar or less was recorded during hydrogenations).

Dehydrogenations of samples (1.75 g) of $\text{Ti}(\text{OBu})_4$ doped and undoped Na_3AlH_6 at different, constantly held temperatures using the thermovolumetric apparatus [15] are represented in Fig. 9.

100-cycle test of Ti(OBu)₄ doped Na₃AlH₆ in a closed system: For the 100-cycle test, the Ti-doped Na₃AlH₆ was pressed under argon into ~0.75 g tablets. 10 tablets (7.41 g) were placed into the autoclave depicted in Fig. 1, which was connected to a pressure cylinder of 0.1 l volume via a capillary. The autoclave was alternately heated to 230 °C during a time span of 11/4 h and then kept at 170 °C over a period of 11/4 or 41/2 h to effect dehydrogenations and rehydrogenations, respectively. Variations of the hydrogen pressure and of the temperature of the autoclave were recorded. One section of the chart of the 100-cycle test is reproduced in Fig. 10; the dependence of the reversible hydrogenation time and the number of cycles is represented in Fig. 11.

2.6. Ti-doped Na_2LiAlH_6

A cyclic test with β -TiCl₃ doped Na₂LiAlH₆ in an open system (Fig. 12) was performed in the same way as that with Na₃AlH₆.

Fig. 1. Schematic representation of the equipment used for the determination of PCIs and for carrying out cyclic tests in an open system.

Pressure [bar]

180

160

140

120

100

80

60

40

20

0

3. Results and discussion

3.1. Doping of $NaAlH_4$, Na_3AlH_6 and Na_2LiAlH_6 with titanium compounds

The doping procedure developed consists of reacting alkali metal alanates in an organic solvent (or in the absence of a solvent) with a small amount of a metal compound used as a dopant. Typically, the doping process was performed with 2 mol% of β -TiCl₃ or Ti(O-*n*-C₄H₉)₄ (Ti(OBu)₄) in ether or toluene. During the course of the doping reaction, these Ti(+3) and Ti(+4) compounds are apparently reduced to the zerovalent stage, as discernible from the evolution of 1.5 and 2.0 mol of H₂/mol Ti, respectively. The nature of the (zerovalent?) Ti-catalyst and its mode of operation are as yet unknown [16].

3.2. PCI diagrams of the Ti-doped NaAlH₄, Na₃AlH₆ and Na₂LiAlH₆

For the assessment of reversible metal hydrides as hydrogen storage systems with respect to their attainable hydrogen storage capacity, and conditions under which the hydrogen discharging and recharging are possible from a thermodynamic point of view, the so-called pressure-concentration isotherms (PCI diagrams) are generally used [1,2,4]. The PCI diagram of the undoped NaAlH₄ at 210 °C in the desorption mode was previously ascertained by Dymova et al. [11]. Due to the improved dehydrogenation-rehydrogenation rates of the Ti-doped NaAlH₄, Na₃AlH₆ and Na₂LiAlH₆, it was now possible to determine the PCI characteristics of all three systems both under hydrogen desorption and absorption conditions, thus underlining the reversibility of the reactions (Eqs. (4)–(6)) and, in principle, their applicability for reversible hydrogen storage.

The PCI diagram of the Ti-doped NaAlH₄ shows at 180 and 211 °C (Fig. 2), clearly discernible, two temperaturedependent pressure plateaus which correspond to the twostep reversible dissociation of the material (Eq. (4)a, Eq. (4)b). The first plateau of the PCI diagram at 211 °C is in good agreement with that determined at 210 °C for the undoped NaAlH₄, but the pressure plateau of the second step lies at a significantly higher pressure with respect to that of undoped NaAlH₄ [11]. The PCI diagram of the doped Na₃AlH₆ at 211 °C (Fig. 3) reveals only one pressure plateau, in accordance with the one-step reversible dissociation of Na_3AlH_6 (Eq. (5)). The $NaAlH_4$ system (Eq. (4)) is distinguished from the Na_3AlH_6 system (Eq. (5)) by a much higher theoretical hydrogen storage capacity (3 H/NaAlH₄ \wedge 5.60 wt% of H; 3 H/Na₃AlH₆ \wedge 2.96 wt% of H). (The reversible hydrogen storage capacities achieved in cyclic tests up to now proved to be dependent upon the reaction conditions and will be discussed in the following section.) On the other hand, the

0 1 2 3 H / Me Fig. 2. Pressure-composition isotherms for the Ti-doped NaAlH₄ at 180 and 211 °C: ______, desorption; _____++____, absorption; _______o_____ desorption isotherm of undoped NaAlH₄ at 210 °C (reproduced from [11]).

211°C

180°C

Fig. 3. Pressure-composition isotherms for the Ti-doped Na_3AlH_6 and Na_2LiAlH_6 at 211°C: ______, desorption; ______+, absorption.

NaAlH₄ system is at a disadvantage with respect to the Na₃AlH₆ system in that, because of the high dissociation pressure of the first plateau, high hydrogen pressures for the charging of hydrogen (e.g., 130–150 bar at 170 °C) are required. The charging of hydrogen in the Na₃AlH₆ system, as can be seen in Fig. 3, can be achieved at much lower hydrogen pressures (e.g., 40–60 bar at 200 °C or lower).

Of particular interest is the PCI diagram of the Ti-doped Na_2LiAlH_6 system (Fig. 3). It shows at 211 °C only one distinct pressure plateau, which is about 20 bar lower than that of the Na_3AlH_6 system. The existence of a single pressure plateau, different from the plateau of Na_3AlH_6 , verifies that we are dealing here with a separate and distinct reversible metal hydride system (theoretical capacity amounts to 3.52 wt% H) and not, for example, a mixture of Na_3AlH_6 and Li_3AlH_6 . The PCI diagrams in Fig. 3 suggest that by partial substitution of Na by Li in Na_3AlH_6 , it should be possible to lower the hydrogen dissociation pressure of the system in a controlled way. Such phenomena are well-known for metal-hydrogen systems, especially for the case of the MmNi₅H₆ system [2].

All three PCI diagrams presented here (Figs. 2 and 3) reveal further interesting application-relevant properties of the investigated systems, namely the absence of hysteresis and their almost negligible plateau slope. When the hydrogen dissociation pressures of the two plateaus of the Ti-doped NaAlH₄ system, measured at 211 and 180 $^{\circ}$ C, are extrapolated to lower temperatures by means of the Van't Hoff plots, it can roughly be estimated that the first plateau should have a dissociation pressure of 1 bar below ambient temperature and the second between 100 and 150 °C. According to Buchner's classification [1], the first step of the reversible NaAlH₄ dissociation (Eq. (4)a) corresponds to a low-temperature metal hydride system and the second (Eq. (4)b), to a middle temperature system. The Ti-doped NaAlH₄ system consists accordingly of a low- and a middle-temperature reversible hydride system, whereas the Ti-doped Na₃AlH₆ system can be described as a middletemperature metal hydride system. According to the present state-of-the-art, those systems can, however, only be operated at temperatures above 140-150°C (see the following section.

3.3. Ti-doped and undoped alkali metal alanates in dehydrogenation-rehydrogenation (cyclic) tests

3.3.1. Ti-doped and undoped NaAl H_4

The effect of the Ti dopant in catalyzing the thermal dissociation of NaAlH₄, generating 1.5 mol of H₂/mol of NaAlH₄ (Eq. (4)) can be seen in Fig. 4. The thermovolumetric curve [15] of NaAlH₄ doped with 2 mol% of β -TiCl₃ in ether (—) or with 2 mol% of Ti(OBu)₄ in toluene (—) is shifted to the extent of 80–85 °C to lower

Fig. 4. Thermovolumetric curves for dehydrogenation (4 °C min⁻¹, room temperature $\rightarrow 270$ °C) of samples of Ti-doped and undoped NaAlH₄: ----, undoped NaAlH₄; —, doping with 2 mol% of β -TiCl₃ in ether; —, doping with 2 mol% of Ti(OBu)₄ in toluene; …, temperature of the sample.

temperatures with respect to that of undoped $NaAlH_4$ (----).

The ability of NaAlH₄ samples to supply hydrogen at the lowest possible temperatures has been assessed through measuring the rate and extent of dehydrogenation at different constantly held temperatures. As can be seen in Fig. 5, the undoped NaAlH₄ sample, at 160 °C, delivers hydrogen at an almost negligible rate and, even at 200 °C, the H₂ evolution takes 22–24 h until completion. In contrast, the hydrogen desorption of NaAlH₄ doped with 2 mol% of Ti(OBu)₄ is completed at 160 °C within 6–8 h and at 180 and 200 °C within 2–3 and 1 h, respectively.

The rehydrogenation of samples of Ti-doped and undoped NaAlH₄ dehydrogenated to the NaH+Al stage (Fig. 4) was performed at 170 °C/152 bar (initial H₂ pressure). As can be seen in Fig. 6 (cf. also the first cycles in Fig. 7), doping with Ti compounds under these conditions has a dramatic effect on improving the rate and the extent of

Fig. 5. Progression of hydrogen desorption in the course of time at different temperatures for samples of Ti-doped (2 mol% Ti(OBu)₄) and undoped NaAlH₄: —, doped NaAlH₄; -----, undoped NaAlH₄.

Fig. 6. Progression of rehydrogenation of dehydrogenated (Fig. 4) samples of Ti-doped and undoped NaAlH₄ at 170 °C/152 bar: —, Ti(OBu)₄ as a dope; —, β -TiCl₃ as a dope; ----, undoped NaAlH₄.

rehydrogenation. Again, better results (higher initial rate of hydrogenation by a factor of 2–3) are achieved by using $Ti(OBu)_4$ instead of β -TiCl₃ as a dopant.

The results of cyclic tests performed with samples of Ti-doped (2 mol% β -TiCl₃, 35 cycles) and undoped NaAlH₄ (20 cycles) in an open system are graphically represented in Fig. 7. As can be ascertained from the recordings of the corresponding processes, the observed decrease of the hydrogen storage capacity from 4.2 to 3.1 wt% over the course of 35 cycles results from the fall-off

Fig. 7. Cyclic tests for samples of Ti doped (—) and undoped NaAlH₄ (······) in an open system. Dehydrogenation: $4 \,^{\circ}\text{C min}^{-1}$, room temperature $\rightarrow 270 \,^{\circ}\text{C}$; Hydrogenation: $170 \,^{\circ}\text{C}/150$ bar (initial H₂ pressure)/ 5 (_____), 21 (_____), 100 h (_____).

Fig. 8. Cyclic tests for samples of Ti-doped (2 mol% β -TiCl₃; —) and undoped Na₃AlH₆ (······) in an open system. Dehydrogenation: 4 °C/ min, room temperature \rightarrow 270 °C; Hydrogenation: 200 °C/60 bar (initial H₂ pressure)/5¹/₂ (_____] or 16 h (_____]).

in the hydrogenation rate. Further improvements of the applied catalysts are therefore desired.

3.3.2. Ti-doped and undoped Na_3AlH_6

For comparison with the NaAlH₄ system, cyclic tests were also performed with Ti-doped (2 mol% β -TiCl₃) and undoped Na₃AlH₆. The dependence of the reversible hydrogen storage capacity upon the number of cycles for the first 15–25 cycles in an open system is shown in Fig. 8. Under the conditions applied, the Ti-doped Na₃AlH₆ exhibits a higher storage capacity (2.1–2.3 wt% H) and better cyclic stability than the undoped Na₃AlH₆.

The dehydrogenations at different temperatures (Fig. 9) and a 100-cycle test (Fig. 10 Fig. 11) were performed with samples of Na₃AlH₆ doped with Ti(OBu)₄, because in experiments with NaAlH₄ (Section 3.3.1) Ti(OBu)₄ proved to be a more effective dopant than β -TiCl₃. As can be seen in Fig. 9, Na₃AlH₆ doped with 2 mol% of Ti(OBu)₄ in ether delivers at 160 °C in 4–5 h, and at 180

Fig. 9. Progression of hydrogen desorption in the course of time at different temperatures for samples of Ti-doped $(2 \text{ mol}\% \text{ Ti}(\text{OBu})_4)$ and undoped Na₃AlH₆: —, doped Na₃AlH₆; - - - -, undoped Na₃AlH₆.

Fig. 10. A section of the chart recording obtained during the 100-cycles test in a closed system with a sample of Ti-doped Na_3AlH_6 .

and 200 °C in 1 h or less ~2.5 wt% H at a virtually constant rate; Fig. 9 shows also that the dehydrogenation rate is substantially improved in comparison to the undoped Na₃AlH₆.

The 100-cycle test (Figs. 10 and 11) was carried out in a closed system, which means under the hydride's own dissociation pressure, whereby the temperature is periodically kept above and below the equilibrium temperature (Fig. 10). During 100 dehydrogenation–rehydrogenation cycles under such conditions only a minor decrease in storage capacity (Fig. 11) is observed.

Fig. 11. A 100-cycles test performed with the sample of Ti-doped Na₃AlH₆ in a closed system: Dependence of the storage capacity upon the number of cycles. Dehydrogenation: 230 °C/30–42 bar/1 $\frac{1}{4}$ h; Hydrogenation: 170 °C/42–30 bar/1 $\frac{3}{4}$ (_______), 4 $\frac{1}{2}$ (______+-___), 12 (______), 20 h (_____).

Fig. 12. A cyclic test performed with a sample of Ti-doped (2 mol% β -TiCl₃) Na₂LiAlH₆ in an open system. Dehydrogenation: 4 °C min⁻¹, room temperature \rightarrow 270 °C; Hydrogenation: 200 °C/60 bar (initial H₂ pressure)/5 $\frac{1}{2}$ (______) or 16 h (______).

3.3.3. Ti-doped Na₂LiAlH₆

A cyclic test was also carried out with a sample of Ti-doped Na₂LiAlH₆ (2 mol% of β -TiCl₃). In a 28-cycle test performed in an open system (Fig. 12) the sample exhibited a comparable cyclic stability and slightly higher storage capacity than the Ti-doped Na₃AlH₆ (Fig. 8).

4. Conclusion and outlook

The results presented here indicate that reversible lowor middle-temperature metal hydride-hydrogen storage systems based on complex hydrides of the light metals Na, Li and Al are feasible. Their current disadvantages include the still unsatisfactory rates of the Ti-catalyzed dehydrogenation-rehydrogenation—and the resulting necessity of operating at relatively high temperatures ($\sim >150$ °C) and hydrogenation pressures (60–150 bar)—and cyclic instability. Further improvements of the systems can be expected by variation of the catalysts and of the hydride compositions.

References

- H. Buchner, *Energiespeicherung in Metallhydriden*, Springer-Verlag, Wien, 1982.
- [2] G. Sandrock, S. Suda and L. Schlapbach, in L. Schlapbach (ed.), *Hydrogen in Intermetallic Compounds II*, Springer-Verlag, 1992, p. 197; S. Suda and G. Sandrock, *Ztschr. Physikal. Chem., Neue Folge*, 183 (1994) 149.
- [3] G. Sandrock, in *Hydrogen Energy System*, NATO ASI Ser. E 1995, 295, Kluwer Ac. Publishers, p. 253.
- [4] R. Wiswall, in G. Alefeld and J. Völkl (eds.), *Hydrogen in Metals II*, Springer-Verlag, 1978, p. 201.
- [5] E.C. Ashby, J. Organometal. Chem., 200 (1980) 1; E.C. Ashby, G.J. Brendel and H.E. Redman, *Inorg. Chem.*, 2 (1963) 499; E.C. Ashby, Chem. and Ind. (1962) 208; E.C. Ashby, French Patent 1235680, 1960.
- [6] H. Clasen, Angew. Chem., 73 (1961) 322.

- [7] T.N. Dymova, N.G. Eliseeva, S.I. Bakum and Yu. M. Dergachev, *Dokl. Akad. Nauk SSSR*, 215 (1974) 1369, Engl. 256.
- [8] E.C. Ashby and P. Kobetz, Inorg. Chem., 5 (1966) 1615.
- [9] L.I. Zakharkin and V.V. Gavrilenko, Dokl. Akad. Nauk SSSR, 145 (1962) 793, Engl. 656.
- [10] J.A. Dilts and E.C. Ashby, Inorg. Chem., 11 (1972) 1230.
- [11] T.N. Dymova, Yu.M. Dergachev, V.A. Sokolov and N.A. Grechanaya, Dokl. Akad. Nauk SSSR, 224 (1975) 591, Engl. 556.
- [12] German patent application 195 26 434.7, July 19, 1995.
- [13] P. Claudy, B. Bonnetot, J.-P. Bastide and J.-M. Létoffé, *Mat. Res. Bull.*, 17 (1982) 1499.
- [14] S. Becke, *Dissertation*, Bochum University, 1991, pp. 11–14, 115–117.
- [15] B. Bogdanović and B. Spliethoff, Chem. Ing. Tech., 55 (1983) 156.
- [16] Of interest in this connection is a recent work by Buhro et al. describing the synthesis of titanium and nickel aluminides from the metal chlorides and lithium aluminium hydride in refluxing mesitylene and subsequent heating of the precipitates in the solid state at 550 °C: J.A. Haber, J.L. Crane, W.E. Buhro, C.A. Frey, S.M.L. Sastry, J.J. Balbach and M.S. Conradi, *Adv. Mater.*, 8 (1996) 163.